Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(11): e9747, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38600640

RESUMO

RATIONALE: N-Nitroso dimethylamine (NDMA) is a mutagenic impurity detected in several ranitidine products. The amino functional group of ranitidine is a risk factor for classical nitrosation-induced NDMA formation in ranitidine drug products during storage conditions. The United States Food and Drug Administration (US FDA) recommended the use of antioxidants to control NDMA in drug products. Considering the need for sensitive analytics, a liquid chromatography/high-resolution mass spectrometry (LC-HRMS) method was developed and validated to detect NDMA in this pilot study to demonstrate the antioxidants as inhibitors of nitrosation reactions. METHODS: The method, utilizing an EC-C18 column and tuned to atmospheric pressure chemical ionization/selected ion monitoring (APCI/SIM) mode, separated NDMA (m/z: 75.0553; tR: 3.71 min) and ranitidine (m/z: 315.1485; tR: 8.61 min). APCI mode exhibited four times higher sensitivity to NDMA than electrospray ionization (ESI) mode. Classical nitrosation of the dimethyl amino group of ranitidine was studied with sodium nitrite in solid pellets. Antioxidants (alpha-tocopherol, ascorbic acid, and trolox) were evaluated as NDMA attenuators in ranitidine pellets under vulnerable storage conditions. The developed method quantified NDMA levels in samples, extracted with methanol through vortex shaking for 45 min. RESULTS: The method achieved a limit of detection (LOD) and limit of quantitation (LOQ) of 0.01 and 0.05 ng/mL, respectively, with linearity within 1-5000 ng/mL (R1: 0.9995). It demonstrated good intra-day and inter-day precision (% RSD [relative standard deviation]: <2) and accuracy (96.83%-101.72%). Nitrosation of ranitidine induced by nitrite was significant (p < 0.001; R2 = 0.9579) at various sodium nitrite levels. All antioxidants efficiently attenuated NDMA formation during ranitidine nitrosation. Ascorbic acid exhibited the highest NDMA attenuation (96.98%), followed by trolox (90.58%). This study recommends 1% ascorbic acid and trolox as potent NDMA attenuators in ranitidine drug products. CONCLUSIONS: This study compared the effectiveness of antioxidants as NDMA attenuators in ranitidine under storage conditions susceptible to NDMA generation. The study concluded that ascorbic acid and trolox are potent inhibitors of NDMA formation and nitrosation attenuators in ranitidine drug products.


Assuntos
Dimetilnitrosamina , Ranitidina , Ranitidina/química , Dimetilnitrosamina/análise , Dimetilnitrosamina/química , Antioxidantes , Cromatografia Líquida de Alta Pressão/métodos , Nitrosação , Nitrito de Sódio , Projetos Piloto , Preparações Farmacêuticas , Ácido Ascórbico
2.
Environ Sci Technol ; 58(10): 4792-4801, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427382

RESUMO

N-Nitrosamines are potential human carcinogens frequently detected in natural and engineered aquatic systems. This study sheds light on the role of carbonyl compounds in the formation of N-nitrosamines by nitrosation of five secondary amines via different pathways. The results showed that compared to a control system, the presence of formaldehyde enhances the formation of N-nitrosamines by a factor of 5-152 at pH 7, depending on the structure of the secondary amines. Acetaldehyde showed a slight enhancement effect on N-nitrosamine formation, while acetone and benzaldehyde did not promote nitrosation reactions. For neutral and basic conditions, the iminium ion was the dominant intermediate for N-nitrosamine formation, while carbinolamine became the major contributor under acidic conditions. Negative free energy changes (<-19 kcal mol-1) and relatively low activation energies (<18 kcal mol-1) of the reactions of secondary amines with N2O3, iminium ions with nitrite and carbinolamines with N2O3 from quantum chemical computations further support the proposed reaction pathways. This highlights the roles of the iminium ion and carbinolamine in the formation of N-nitrosamines during nitrosation in the presence of carbonyl compounds, especially in the context of industrial wastewater.


Assuntos
Nitrosaminas , Humanos , Nitrosaminas/química , Nitrosação , Aminas , Carcinógenos , Nitritos/química
3.
Food Funct ; 15(6): 3130-3140, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38436057

RESUMO

Nitrite widely exists in meat products, and has the functions of bacteriostasis, antisepsis, and color development. However, in an acidic environment, nitrite will react with amines, and further generate nitrosamines with carcinogenic and teratogenic effects. Polyphenols have good antioxidant and nitrite-scavenging effects. This study aimed to evaluate the inhibitory effects of gallic acid, catechin, and procyanidin B2 on the nitrosation reaction under stomach simulating conditions and discuss the potential inhibitory mechanism. The nitrite scavenging rate and nitrosamine synthesis blocking rate of gallic acid, catechin, and procyanidin B2 under different reaction times and contents was determined by UV-vis spectrophotometry. The possible products of the reaction of the three polyphenols with nitrite were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) to reveal the mechanism of inhibiting nitrification. The results showed that the scavenging rate of the three polyphenols on nitrite and the blocking rate of nitrosamine synthesis increased with the increase of the content and reaction time. The ability of the three polyphenols to inhibit nitrosation was catechin > procyanidin B2 > gallic acid. HPLC-MS analysis showed that under simulated gastric juice conditions, the three phenolics were oxidized by nitrous acid to form their semiquinone radicals as the intermediates and nitrosated derivatives, while nitrite might be converted to ˙NO. These results suggested that gallic acid, catechin, and procyanidin B2 could inhibit nitrosation reactions in an acidic environment and may be used as food additives to reduce nitrite residues and nitrosamines in food.


Assuntos
Biflavonoides , Catequina , Nitrosaminas , Proantocianidinas , Ácido Gálico/farmacologia , Nitritos , Nitrosação , Polifenóis , Estômago
4.
J Agric Food Chem ; 72(9): 4777-4787, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377948

RESUMO

Nitrite is a common additive in cured meat formulation that provides microbiological safety, lipid oxidation management, and typical organoleptic properties. However, it is associated with the formation of carcinogenic N-nitrosamines. In this context, the antinitrosating capacity of selected flavonoids and ascorbate was evaluated in a simulated cooked and cured meat under formulation and digestion conditions. N-Acetyltryptophan was used as a secondary amine target. (-)-Epicatechin, rutin, and quercetin were all able to limit the formation of N-acetyl-N-nitrosotryptophan (NO-AcTrp) at pH 2.5 and pH 5 although (-)-epicatechin was 2 to 3-fold more efficient. Kinetics for the newly identified compounds allowed us to unravel common mechanistic pathways, which are flavonoid oxidation by nitrite followed by C-nitration and an original covalent coupling between NO-AcTrp and flavonoids or their nitro and nitroso counterparts. C-nitrosation of the A-ring was evidenced only for (-)-epicatechin. These major findings suggest that flavonoids could help to manage N-nitrosamine formation during cured meat processing, storage, and digestion.


Assuntos
Catequina , Nitrosaminas , Triptofano/análogos & derivados , Aminas , Nitrosação , Flavonoides , Nitritos/química , Nitrosaminas/química , Carne/análise
5.
ACS Chem Biol ; 19(1): 193-207, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38159293

RESUMO

S-Nitrosation is a cysteine post-translational modification fundamental to cellular signaling. This modification regulates protein function in numerous biological processes in the nervous, cardiovascular, and immune systems. Small molecule or protein nitrosothiols act as mediators of NO signaling by transferring the NO group (formally NO+) to a free thiol on a target protein through a transnitrosation reaction. The protein targets of specific transnitrosating agents and the extent and functional effects of S-nitrosation on these target proteins have been poorly characterized. S-nitroso-coenzyme A (CoA-SNO) was recently identified as a mediator of endogenous S-nitrosation. Here, we identified direct protein targets of CoA-SNO-mediated transnitrosation using a competitive chemical-proteomic approach that quantified the extent of modification on 789 cysteine residues in response to CoA-SNO. A subset of cysteines displayed high susceptibility to modification by CoA-SNO, including previously uncharacterized sites of S-nitrosation. We further validated and functionally characterized the functional effects of S-nitrosation on the protein targets phosphofructokinase (platelet type), ATP citrate synthase, and ornithine aminotransferase.


Assuntos
Coenzima A , Cisteína , S-Nitrosotióis , Nitrosação , Cisteína/química , Proteômica , Proteínas/metabolismo , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo , Óxido Nítrico/metabolismo
6.
ACS Appl Bio Mater ; 6(8): 3266-3277, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37556766

RESUMO

Nitric oxide (NO) is a ubiquitous messenger molecule playing a key role in various physiological and pathological processes. However, producing a selective turn-on fluorescence response to NO is a challenging task due to (a) the very short half-life of NO (typically in the range of 0.1-10 s) in the biological milieu and (b) false positive responses to reactive carbonyl species (RCS) (e.g., dehydroascorbic acid and methylglyoxal etc.) and some other reactive oxygen/nitrogen species (ROS/RNS), especially with o-phenylenediamine (OPD) based fluorosensors. To avoid these limitations, NO sensors should be designed in such a way that they react spontaneously with NO to give turn-on response within the time frame of t1/2 (typically in the range of 0.1-10 s) of NO and λem in the visible wavelength along with good cell permeability to achieve biocompatibility. With these views in mind, a N-nitrosation based fluorescent sensor, NDAQ, has been developed that is highly selective to NO with ∼27-fold fluorescence enhancement at λem = 542 nm with high sensitivity (LOD = 7 ± 0.4 nM) and shorter response time, eliminating the interference of other reactive species (RCS/ROS/RNS). Furthermore, all the photophysical studies with NDAQ have been performed in 98% aqueous medium at physiological pH, indicating its good stability under physiological conditions. The kinetic assay illustrates the second-order dependency with respect to NO concentration and first-order dependency with respect to NDAQ concentration. The biological studies reveal the successful application of the probe to track both endogenous and exogenous NO in living organisms.


Assuntos
Óxido Nítrico , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Nitrosação , Fluorescência , Oxigênio
7.
Chem Commun (Camb) ; 59(64): 9774-9777, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486167

RESUMO

S-Nitrosothiols (SNOs) serve as endogenous carriers and donors of NO within living cells, releasing nitrosonium ions (NO+), NO, or other nitroso derivatives. In this study, we present a bioinspired {Co(NO)2}10 complex 1 that achieved S-nitrosation towards Cys residues. The incorporation of a ferrocenyl group in 1 allowed for fine-tuning of the nitrosation reaction, taking advantage of the redox ability of Cys residues. Complex 1 was synthesized and characterized, demonstrating its NO translation reactivity. Furthermore, complex 1 successfully converted Cys into S-nitrosocysteine (Cys-SNO), as confirmed by UV-Vis, IR, and XAS spectroscopy. This study presents a promising approach for S-nitrosation of Cys residues for further exploration in the modification of Cys-containing peptides.


Assuntos
Cisteína , S-Nitrosotióis , Nitrosação , Cisteína/química , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo , Óxido Nítrico/química , Oxirredução
8.
J Inorg Biochem ; 246: 112263, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290359

RESUMO

Nitrophorins are heme proteins used by blood feeding insects to deliver nitric oxide (NO) to a victim, leading to vasodilation and antiplatelet activity. Cimex lectularius (bedbug) nitrophorin (cNP) accomplishes this with a cysteine ligated ferric (Fe(III)) heme. In the acidic environment of the insect's salivary glands, NO binds tightly to cNP. During a blood meal, cNP-NO is delivered to the feeding site where dilution and increased pH lead to NO release. In a previous study, cNP was shown to not only bind heme, but to also nitrosate the proximal cysteine, leading to Cys-NO (SNO) formation. SNO formation requires oxidation of the proximal cysteine, which was proposed to be metal-assisted through accompanying reduction of ferric heme and formation of Fe(II)-NO. Here, we report the 1.6 Å crystal structure of cNP first chemically reduced and then exposed to NO, and show that Fe(II)-NO is formed but SNO is not, supporting a metal-assisted SNO formation mechanism. Crystallographic and spectroscopic studies of mutated cNP show that steric crowding of the proximal site inhibits SNO formation while a sterically relaxed proximal site enhances SNO formation, providing insight into specificity for this poorly understood modification. Experiments examining the pH dependence for NO implicate direct protonation of the proximal cysteine as the underlying mechanism. At lower pH, thiol heme ligation predominates, leading to a smaller trans effect and 60-fold enhanced NO affinity (Kd = 70 nM). Unexpectedly, we find that thiol formation interferes with SNO formation, suggesting cNP-SNO is unlikely to form in the insect salivary glands.


Assuntos
Percevejos-de-Cama , Heme , Animais , Heme/química , Percevejos-de-Cama/metabolismo , Óxido Nítrico/metabolismo , Nitrosação , Compostos Férricos , Cisteína/metabolismo , Ferro , Compostos Ferrosos/química
9.
J Am Chem Soc ; 145(26): 14184-14189, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37267591

RESUMO

The Se-nitrosation in selenoproteins such as glutathione peroxidase and thioredoxin reductase to produce Se-nitrososelenocysteines (Sec-SeNOs) has been proposed to play crucial roles in signaling processes mediated by reactive nitrogen species and nitrosative-stress responses, although chemical evidence for the formation of Sec-SeNOs has been elusive not only in proteins but also in small-molecule systems. Herein, we report the first synthesis of a Sec-SeNO by employing a selenocysteine model system that bears a protective molecular cradle. The Sec-SeNO was characterized using 1H and 77Se nuclear magnetic resonance as well as ultraviolet/visible spectroscopy and found to have persistent stability at room temperature in solution. The reaction processes involving the Sec-SeNO provide experimental information that serves as a chemical basis for elucidating the reaction mechanisms involving the SeNO species in biological functions, as well as in selenol-catalyzed NO generation from S-nitrosothiols.


Assuntos
Selênio , Selenoproteínas , Nitrosação , Selenoproteínas/metabolismo , Glutationa Peroxidase/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Selenocisteína/química , Selênio/metabolismo
10.
Inorg Chem ; 62(14): 5630-5643, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36995075

RESUMO

Conversion of NO to stable S-nitrosothiols is perceived as a biologically important strategy of NO storage and a signal transduction mechanism. Transition-metal ions and metalloproteins are competent electron acceptors that may promote the formation of S-nitrosothiols from NO. We selected N-acetylmicroperoxidase (AcMP-11), a model of protein heme centers, to study NO incorporation to three biologically relevant thiols (glutathione, cysteine, and N-acetylcysteine). The efficient formation of S-nitrosothiols under anaerobic conditions was confirmed with spectrofluorimetric and electrochemical assays. AcMP-11-assisted incorporation of NO to thiols occurs via an intermediate characterized as an N-coordinated S-nitrosothiol, (AcMP-11)Fe2+(N(O)SR), which is efficiently converted to (AcMP-11)Fe2+(NO) in the presence of NO excess. Two possible mechanisms of S-nitrosothiol formation at the heme-iron were considered: a nucleophilic attack on (AcMP-11)Fe2+(NO+) by a thiolate and a reaction of (AcMP-11)Fe3+(RS) with NO. Kinetic studies, performed under anaerobic conditions, revealed that the reversible formation of (AcMP-11)Fe2+(N(O)SR) occurs in a reaction of RS- with (AcMP-11)Fe2+(NO+) and excluded the second mechanism, indicating that the formation of (AcMP-11)Fe3+(RS) is a dead-end equilibrium. Theoretical calculations revealed that N-coordination of RSNO to iron, forming (AcMP-11)Fe2+(N(O)SR), shortens the S-N bond and increases the complex stability compared to S-coordination. Our work unravels the molecular mechanism of heme-iron-assisted interconversion of NO and low-molecular-weight thiols to S-nitrosothiols and recognizes the reversible NO binding in the form of a heme-Fe2+(N(O)SR) motif as an important biological strategy of NO storage.


Assuntos
S-Nitrosotióis , Nitrosação , S-Nitrosotióis/química , Cinética , Compostos de Sulfidrila , Ferro/química , Heme/metabolismo , Óxido Nítrico/química
11.
J Pharm Sci ; 112(5): 1333-1340, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871894

RESUMO

N-Nitroso compounds have been listed as one of the cohorts of concern as per ICH M7. In recent years, the regulatory focus has shifted from common nitrosamines to nitroso-impurities of drug products. Thus, the detection and quantification of unacceptable levels of nitrosamine drug substance-related impurities are of great concern for analytical scientists during drug development. Moreover, risk assessment of nitrosamines is also an essential part of the regulatory filling. For risk assessment, the Nitrosation Assay Procedure suggested by WHO expert group in 1978 is being followed. However, it could not be adopted by the pharmaceutical industries due to the limitation of drug solubility and artefact formation in the test conditions. In this work, we have optimized an alternative nitrosation test to investigate the likelihood of direct nitrosation. The technique is simple, where the drug solubilized in an organic solvent is incubated at 37°C with a nitrosating agent named tertiary butyl nitrite in a 1:10 molar ratio. LC-UV/MS-based chromatographic method was developed to separate drug substances and respective nitrosamine impurities using the C18 analytical column. The methodology was successfully tested on five drugs with varying structural chemistry. The procedure is straightforward, effective, and quick for the nitrosation of secondary amines. This modified nitrosation test and WHO prescribed nitrosation test have been compared and found that the modified methodology is more effective and time-saving.


Assuntos
Nitrosaminas , Compostos Nitrosos , Aminas/química , Nitrosação
12.
Chemistry ; 29(32): e202300957, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36975121

RESUMO

A flow electrochemical method towards the synthesis of N-nitroso compounds from secondary amines using cheap and readily available sodium nitrite has been developed. Sodium nitrite dissolved in aqueous acetonitrile made additional electrolytes unnecessary. This mild and straightforward approach made the use of acids or other harsh and toxic chemicals redundant. This procedure was applied to an assortment of cyclic and acyclic secondary amines (27 examples) resulting in yields of N-nitrosamines as high as 99 %. To demonstrate the practicality of the process, scaled-up reactions were performed. Finally, selected products could be purified by using an in-line acidic extraction.


Assuntos
Aminas , Nitrosaminas , Aminas/química , Nitrosação , Nitrito de Sódio , Eletroquímica , Nitritos
13.
J Pharm Sci ; 112(5): 1324-1332, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828125

RESUMO

While many reactive species are known to cause N-nitrosation, trace nitrite (NO2-), which may be present in several excipients, is a source of nitrosating agents in pharmaceutical formulations. In this study we have found that the salt form of NO2- can influence the favored nitrosation conditions and final amount of nitrosamine being formed. Using native levels of NO2-, most likely present as ammonium nitrite (NH4NO2), in microcrystalline cellulose, we have determined the kinetics of nitrosamine formation in solid state with dimethylamine substrate present in metformin, used as model compound. It was found that the competing degradation of NH4NO2 into N2 and H2O limited the amount of nitrosamine formation to a great extent. Empirically modelling the kinetic data predicted reaching at maximum 1.6% conversion over a hypothetical 3-year shelf-life. These results also showed that using other sources of NO2- as spiking reagents, such as NaNO2, may lead to unrealistic worst-case situations when the main form of NO2- in the drug product (DP) under evaluation may be NH4NO2. As well, measuring NO2- in freshly manufactured excipients containing NO2- potentially as NH4NO2 may lead to biased high NO2- content, which is not representative of the actual amounts present at the time of DP manufacture.


Assuntos
Nitritos , Nitrosaminas , Nitritos/química , Nitritos/metabolismo , Dimetilnitrosamina/química , Dimetilnitrosamina/metabolismo , Nitrosação , Dióxido de Nitrogênio , Excipientes , Cinética
14.
Free Radic Biol Med ; 193(Pt 1): 171-176, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36243209

RESUMO

Emerging evidence indicates the importance of S-nitrosation in regulating protein function and activity. This chemical reaction has been termed protein S-nitrosylation to emphasize its biological importance as a posttranslational modification, in some ways reminiscent of phosphorylation. The reaction at cysteine thiols is distinct from other chemical reactions of nitric oxide (NO) that activate soluble guanylate cyclase via nitrosylation of heme or formation of peroxynitrite via reaction with superoxide anion to produce tyrosine nitration. Here, we review the importance of pathological, aberrant transnitrosylation reactions, i.e., transfer of the NO group from one protein to another, and its consequent effect on the pathogenesis of neurological disorders, to date on Alzheimer's disease (AD), but also expected to affect Parkinson's disease (PD)/Lewy body dementia (LBD), HIV-associated neurocognitive disorder (HAND), and other neurodegenerative and neurodevelopmental disorders.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteínas/metabolismo , Nitrosação , Óxido Nítrico/metabolismo , Sinapses/patologia
15.
Free Radic Biol Med ; 189: 111-121, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35918012

RESUMO

The S-nitrosoglutathione reductase (GSNOR) is a key denitrosating enzyme that regulates protein S-nitrosation, a process which has been found to be involved in the pathogenesis of Parkinson's disease (PD). However, the physiological function of GSNOR in PD remains unknown. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we found that GSNOR expression was significantly increased and accompanied by autophagy mediated by MPTP-induced cyclin dependent kinase 5 (CDK5), behavioral dyskinesias and dopaminergic neuron loss. Whereas, knockout of GSNOR, or treatment with the GSNOR inhibitor N6022, alleviated MPTP-induced PD-like pathology and neurotoxicity. Mechanistically, deficiency of GSNOR inhibited MPTP-induced CDK5 kinase activity and CDK5-mediated autophagy by increasing S-nitrosation of CDK5 at Cys83. Our study indicated that GSNOR is a key regulator of CDK5 S-nitrosation and is actively involved in CDK5-mediated autophagy induced by MPTP.


Assuntos
Álcool Desidrogenase/metabolismo , Intoxicação por MPTP , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Autofagia , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Intoxicação por MPTP/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nitrosação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
16.
Angew Chem Int Ed Engl ; 61(41): e202210146, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35971898

RESUMO

Dinitrogen trioxide (N2 O3 ) is a powerful and efficient nitrosating agent that comes with an unprecedented atom economy. However, the synthetic application of N2 O3 is still underdeveloped mostly due to its inherent instability and the lack of reliable protocols for its preparation. This paper presents an open-source setup and procedure for the on-demand generation of anhydrous N2 O3 solution (up to 1 M), which can be further used for reactions under batch and flow conditions. The accuracy and stability of N2 O3 concentration are guaranteed with the absence of head-space in the setup and with the synchronization of the gas flows. The reliability of this protocol is demonstrated by >30 worked examples in the nitrosative synthesis of heterocycles-a library of structurally diverse benzotriazoles and sydnones. Kinetic and mechanistic aspects of the N-nitrosative steps are also explored.


Assuntos
Óxidos de Nitrogênio , Sidnonas , Nitrosação , Reprodutibilidade dos Testes
17.
Redox Biol ; 56: 102439, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995009

RESUMO

Nitrosation of critical thiols has been elaborated as reversible posttranslational modification with regulatory function in multiple disorders. Reversibility of S-nitrosation is generally associated with enzyme-mediated one-electron reductions, catalyzed by the thioredoxin system, or by nitrosoglutathione reductase. In the present study, we confirm previous evidence for a non-enzymatic de-nitrosation of nitrosoglutathione (GSNO) by superoxide. The interaction leads to the release of nitric oxide that subsequently interacts with a second molecule of superoxide (O2•-) to form peroxynitrite. Despite the formation of peroxynitrite, approximately 40-70% of GSNO yielded reduced glutathione (GSH), depending on the applied analytical assay. The concept of O2•- dependent denitrosation was then applied to S-nitrosated enzymes. S-nitrosation of isocitrate dehydrogenase (ICDH; NADP+-dependent) was accompanied by an inhibition of the enzyme and could be reversed by dithiothreitol. Treatment of nitrosated ICDH with O2•- indicated ca. 50% recovery of enzyme activity. Remaining inhibition was largely consequence of oxidative modifications evoked either by O2•- or by peroxynitrite. Recovery of activity in S-nitrosated enzymes by O2•- appears relevant only for selected examples. In contrast, recovery of reduced glutathione from the interaction of GSNO with O2•- could represent a mechanism to regain reducing equivalents in situations of excess O2•- formation, e.g. in the reperfusion phase after ischemia.


Assuntos
Compostos de Sulfidrila , Superóxidos , Ditiotreitol , Glutationa/metabolismo , Isocitrato Desidrogenase , NADP , Óxido Nítrico , Nitrosação , Ácido Peroxinitroso , S-Nitrosoglutationa/metabolismo , Tiorredoxinas
18.
J Pharm Biomed Anal ; 218: 114872, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35696937

RESUMO

The possibility of N-Nitrosation in the absence of nitrosating agents was studied on model solutions and film coated tablets containing metformin. N-nitrosodimethylamine (NDMA) and N-nitrosation precursors (dimethylamine and nitrites) were determined using previously published fully validated analytical methods. Alternative routes to N-nitrosation were found. Dimethylamine can undergo an oxidation to nitrite in the presence of strong oxidants (e.g., H2O2), as was observed during wastewater treatment in several published works. The resulting nitrite can consecutively act as a nitrosating agent. We proved that the described reaction indeed leads to N-nitrosation (NDMA formation in case of dimethylamine precursor) in model solutions made of dimethylamine and H2O2. An experiment was designed in order to prove those reactions take place in dosage forms. Film coated tablets present a highly heterogenous system with several solid phases and low water activity, which is in stark contrast to the liquid wastewater, where this reaction was originally studied. Despite that, the described reaction took place even in the tablets, but only to a small degree. The amount formed via this alternative route corresponds to less than 10 % of the total formed NDMA. The pH optimum of this alternative route lies in the alkaline range which was confirmed by the determined NDMA concentration in model solutions. The solid phase system (i.e., tablets) was found to behave differently. The addition of Na2CO3 into the tablets during manufacture resulted in tablets without NDMA (cNDMA < LOQ) even in batches spiked with both dimethylamine and H2O2. Thus, adjusting the pH of the solid dosage forms remains a sufficient measure of controlling N-nitrosamines in the product, even in product with limit amounts of oxidating agent (H2O2) and N-nitrosation precursor (dimethylamine).


Assuntos
Peróxido de Hidrogênio , Nitritos , Dimetilaminas , Dimetilnitrosamina , Nitrosação , Preparações Farmacêuticas
19.
J Med Chem ; 65(8): 5902-5925, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35412827

RESUMO

Protein S-nitrosation (SNO), a posttranslational modification (PTM) of cysteine (Cys) residues elicited by nitric oxide (NO), regulates a wide range of protein functions. As a crucial form of redox-based signaling by NO, SNO contributes significantly to the modulation of physiological functions, and SNO imbalance is closely linked to pathophysiological processes. Site-specific identification of the SNO protein is critical for understanding the underlying molecular mechanisms of protein function regulation. Although careful verification is needed, SNO modification data containing numerous functional proteins are a potential research direction for druggable target identification and drug discovery. Undoubtedly, SNO-related research is meaningful not only for the development of NO donor drugs but also for classic target-based drug design. Herein, we provide a comprehensive summary of SNO, including its origin and transport, identification, function, and potential contribution to drug discovery. Importantly, we propose new views to develop novel therapies based on potential protein SNO-sourced targets.


Assuntos
Cisteína , Proteína S , Cisteína/química , Óxido Nítrico/metabolismo , Nitrosação , Processamento de Proteína Pós-Traducional , Proteína S/metabolismo , Proteínas/metabolismo
20.
Sci Rep ; 12(1): 6639, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459243

RESUMO

Current human donor care protocols following death by neurologic criteria (DNC) can stabilize macro-hemodynamic parameters but have minimal ability to preserve systemic blood flow and microvascular oxygen delivery. S-nitrosylated hemoglobin (SNO-Hb) within red blood cells (RBCs) is the main regulator of tissue oxygenation (StO2). Based on various pre-clinical studies, we hypothesized that brain death (BD) would decrease post-mortem SNO-Hb levels to negatively-impact StO2 and reduce organ yields. We tracked SNO-Hb and tissue oxygen in 61 DNC donors. After BD, SNO-Hb levels were determined to be significantly decreased compared to healthy humans (p = 0·003) and remained reduced for the duration of the monitoring period. There was a positive correlation between SNO-Hb and StO2 (p < 0.001). Furthermore, SNO-Hb levels correlated with and were prognostic for the number of organs transplanted (p < 0.001). These clinical findings provide additional support for the concept that BD induces a systemic impairment of S-nitrosylation that negatively impacts StO2 and reduces organ yield from DNC human donors. Exogenous S-nitrosylating agents are in various stages of clinical development. The results presented here suggest including one or more of these agents in donor support regimens could increase the number and quality of organs available for transplant.


Assuntos
Hemoglobinas , Oxigênio , Eritrócitos , Hemodinâmica , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Humanos , Nitrosação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...